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Formal Verification of the 
NASA Runway Safety Monitor 

Abstract 

The Runway Safety Monitor (RSM) designed by Lockheed Martin is part of NASA's effort 
to reduce aviation accidents. We developed a Petri net model of the RSM protocol and used 
the model checking functions of our tool S" to investigate a number of safety properties in 
RSM. To mitigate the impact of state-space explosion, we built a highly discretized model of the 
system, obtained by partitioning the monitored runway zone into a grid of smaller volumes and 
by considering scenarios involving only two aircraft. The model also assumes that there are no 
communication failures, such as bad input from radar or lack of incoming data, thus it relies on 
a consistent view of reality by all participants. In spite of these simplifications, we were able to 
expose potential problems in the RSM conceptual design. Our findings were forwarded to the 
design engineers, who undertook corrective action. Additionally, the results stress the efficiency 
attained by the new model checking algorithms implemented in E", and demonstrate their 
applicability to real-world systems. Attempts to verify RSM with NuSMV and SPIN have failed 
due to excessive memory consumption. 

1 Introduction 

As the systems that are put into operation grow in complexity every year, an increasing share of 
the functionality in modern aircraft is shifted to computer-based, automated devices. However, this 
rapid advance in sophistication is not matched by an equal advance in the degree of certification 
of the deployed devices. This is due to the tremendous amounts of resources, measured in time, 
human expertise, and money, required for the analysis of complex systems. 

The field of formal methods offers an alternative to traditional testing approaches that can ex- 
plore only a limited number of scenarios. Formal verification uses rigorous mathematical techniques 
to exhaustively check that a model of the system satisfies a set of desired properties. 

Model checking, which has gained increased popularity since the early 9Os, is a completely au- 
tomatic technique that relies on discovering the set of reachable states of the model and evaluating 
whether a given property, expressed in a temporal logic, is satisfied or not. The model is usually 
specified in a modeling language, such as automata, Petri nets, or pseudo-code, rather than using 
mathematical notation. If a temporal property holds, model checking certifies it with 100% confi- 
dence. When a property does not hold, the model checking tool provides a counterexample, in the 
form of an execution path in the model, which can illustrate the source of the errors. 

When using these computerized tools to verify modern protocols, the major obstacle is usually 
the state-space explosion phenomenon. As the size and complexity of a model increases, the size of 
the state-space also increases, sometimes exponentially. Nevertheless, advances in model checking 
techniques, particularly in symbolic model checking, have made it possible to  analyze systems with 
extremely large state spaces. 

Model checking has been particularly successful in the verification of complex, mostly syn- 
chronous, circuit designs. However, until recently, it has usually been considered inadequate for 
verifying large asynchronous protocols and software. For the last several years, our research has 
successfully targeted the class of globally-asynchronous locally-synchronous systems, consisting of 
loosely coupled systems (homogeneous or heterogeneous) evolving somewhat independently of each 
other. 

Recently, NASA and Lockheed Martin have begun developing a protocol to detect runway 
incidents, called the Runway Safety Monitor (RSM) [12], which represents an excellent candidate 
for our techniques. While its verification was challenging and pushed our computational resources 
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to the limit, we were able to discover several obscure scenarios that constitute potential hazards. 
Equally significant, however, is the fact that so few hazards were discovered overall, compared to 
the total number of reachable states, 6.7 x This is strong evidence that RSM is robust and 
safe. 

The rest of the paper is structured as follows. Sections 2 and 3 describe RSM and our tool 
SWT, which we used for this study. Section 4 gives the details of the RSM model we developed 
and Section 5 reports the results of our analysis. Finally, Section 6 summarizes our work and 
discusses ideas for future extensions. 

2 The Runway Safety Monitor 

The Runway Safety Monitor (RSM) is a component of NASA’s Runway Incursion Prevention Sys- 
tem (RIPS) research [16]. Designed and implemented by Lockheed Martin engineers, RSM is 
intended to be incorporated in the Integrated Display System (IDS) [l], a suite of cockpit systems 
which NASA has been developing since 1993. IDS also includes other conflict detection and pre- 
vention algorithms, such as TCAS I1 [17]. The IDS design enables RSM to exploit existing data 
communications facilities, displays, Global Positioning System (GPS), ground surveillance system 
information, and data-links. 

Collision avoidance protocols are already in operation. TCAS [17] has been in use since 1994 
and is now required by the Federal Aviation Administration (FAA) on all commercial US aircraft. 
TCAS has a full formal specification, but it has been verified only partially, due to its complexity 

The Small Aircraft Transportation System SATS [2], also under development at NASA Langley 
to help ensure safe landings of general aviation craft at towerless regional airports, has been instead 
formally verified [ll]. 

Purpose of RSM. The goal of the Runway Safety Monitor is to detect runway incursions, defined 
by the FAA as “any occurrence at an  airport involving a n  aircraft, vehicle, person, or  object o n  the 
ground, that creates a collision hazard or results in the loss of separation with an aircraft taking 
08, intending to take off, landing, or intending to  land. ” 

Since most air safety incidents occur on or near runways, the Runway Safety Monitor plays a key 
role in accident avoidance. RSM is not intended to prevent incursions, but to detect them and alert 
the pilots. Prevention is provided by other components of RIPS in the form of a number of IDS 
capabilities such as heads-up display, electronic moving map, cockpit display of traffic information, 
and taxi routing. Experimental studies conducted by Lockheed Martin [12, 211 show that incursion 
situations are less likely to occur when IDS technology is employed on aircraft. RSM should greatly 
improve this positive effect. 

RSM design. Figure 1 shows the high-level architecture of the RSM algorithm. RSM runs on a 
device installed in the cockpit and is activated prior to takeoff and landing procedures at airports. 
An independent copy of RSM runs on each aircraft and refers to the aircraft on which it is operating 
as ownshzp and to other aircraft, ground vehicles using the same runway, or even physical obstacles 
such as equipment, as targets. 

RSM monitors traffic in a zone surrounding the runway where the takeoff or landing is to take 
place. The zone is a 3-D volume of space that runs up to 220 feet laterally from each edge of the 
runway, up to 400 feet of altitude above the runway, and 1.1 nautical miles from each runway end 
(the 400 feet altitude corresponds to a 3” glide slope for takeoff/landing trajectories). 

The protocol, implemented as a C-language program, consists of a repeat-loop over three major 
phases. In the first phase, RSM gathers traffic information from radar updates received through 

[3, 131. 
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Figure 1: RSM Algorithm top-level design. 

a data-link. It identifies each target present in the monitored zone and stores its 3-D physical 
coordinates. The frequency of the updates may not be constant, updates can be lost, and data 
might even be faulty. The implications of data-link errors or omissions are not addressed in this 
study, but present a challenging task for future study. These errors have already been the subject of 
some experimental measurements [21], and their analysis calls for a stochastic flavor not captured 
in our present model, which is instead concerned only with logical errors. 

In the second phase, the algorithm assigns a status to each target, from a predetermined set of 
values that includes taxi, pre-takeoff, takeoff, climb out, landing, roll out, and fly-through modes. 
We discuss in detail the meaning of these state when we describe our model of the system. 

The third phase is responsible for detecting incursions, and is performed for each target based 
on the spatial attributes (position, heading, acceleration) of ownship and target, plus some logical 
conditions. Table 2, discussed later, shows the operational state matrix of this phase. Our analysis 
focuses on certifying that this decision procedure is able to detect all possible incursion scenarios, 
or on finding possible incursion scenarios where RSM fails to raise an alarm. 

3 Overview of the Sh" tool 

To model the Runway Safety Monitor, we employ our tool f" (the Stochastic and Model 
checking Analyzer for Reliability and Timing) [5],  which we developed for the logical and stochastic 
analysis of structured systems. Given a formal description of a system as a Petri net, SAKI' can 
generate the state-space, verify temporal-logic properties, and provide efficient numerical solutions 
for timing and stochastic analysis. SPWT has several advantages over most other model checkers: 
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Compact storage for states with Multiway Decision Diagrams (MDDs) [MI, a generalized 
version of the Binary Decision Diagrams (BDDs) for multi-valued variables. 

Extremely compact encoding of the transition relation between states with Kronecker matrices 
~71. 

Efficient symbolic state-space exploration algorithms based on saturation [6], a state-of-the- 
art fixed-point iteration strategy. 

Fast generation of counterexamples, based on Edge-Valued MDDs (EVMDDs) [8]. 

The SWZT input is a Petri net with Turing-equivalent extensions (immediate transitions and 
marking dependent arc cardinalities) [20], required to have a finite state-space. Each SWIFT input 
file defines one or more structured (i.e., partitioned into submodels) event-based models. A model 
can be parameterized and defines a set of measures, which, in our case, can be thought of logical 
queries to be evaluated by systematic state exploration. 

SWT implements a wide range of explicit as well as implicit exploration methods. Use of the 
most advanced techniques requires a partition of the model to exploit the system structure. A par- 
tition of the Petri net model into K submodels is equivalent to partitioning its places (representing 
the system variables) into subnets. Subsequently, a system state (a marking of the places with 
tokens) can be written as the concatenation of K local states (submarkings) and thus be encoded 
as an MDD. In particular, a partition is Kronecker-consistent if any global system behavior can 
be expressed as a functional product of local behaviors for each subsystem. For example, from a 
logical point of view, an event in the model is globally enabled if it is locally enabled in each of 
the K submodels in isolation. Similar consistency requirements can be defined for transition guard 
expressions or, from a stochastic point of view, for transition firing rates (but only the logical in- 
terpretation of Kronecker consistency is needed in this study). A more detailed discussion follows 
in Section 4. 

The SWT input syntax is presented in the comprehensive SWT User Manual [4]. 
There are several reasons to why we used a tool designed for the analysis of discrete-state 

systems to  model and verify an embedded (hybrid) system. Even though there exist tools for the 
verification of hybrid systems, such as HyTech [14], their focus is on the integration of discrete 
and continuous aspects of the systems. The discrete aspects of a large application like RSM are 
well beyond the scope of the state-of-the-art hybrid model checkers. Moreover, it is clear that the 
actual RSM algorithm is implicitly using a discretized view of time: the radar updates are not fed 
continuously to the RSM device, but only at  a given frequency (nominally, at every 0.5 seconds). 
This suggests that an abstraction scheme for the other continuous-type variables (location and 
speed of aircraft) is adequate in this case. Last but not least, the discretized RSM model belongs 
to the class of globally asynchronous/locally synchronous systems, for the analysis of which the 
saturation-based algorithms implemented in SWKC excel. 

4 The SWEI' model of RSM 

To model RSM, we first identify the variables representing the system state and the events describing 
the potential state-to-state transitions. Then, we translate this information into a Petri net for input 
into WWI'. We partition the model into n + 1 submodels where n is the number of targets moving 
inside the zone. The variables of the first submodel (indexed 0) describe the state of ownship. The 
variables of the other n submodels describe the state of each target. For submodel i ,  0 5 i 5 n, the 
relevant attributes are: 
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Location: a 3-D vector (xi, yi ,  z i ) ,  where the X-axis is across the width of the runway, the Y-axis 
is along the length, and the Z-axis is on the vertical. 

Speed and heading: a second 3-D vector (wxi, vyi, vzi). 

Acceleration along the runway: ayi.  

Status: an enumerated type variable, statusi. 

Alarm flag: a boolean variable, a h m i .  

Phase: an integer variable, phasei. 

All other variables are deemed irrelevant to our study and can be abstracted away from the model 
to reduce the size of its state space. 

As mentioned earlier, WAFT requires a partitioning of the model variables in order to apply 
the most advanced symbolic model checking techniques. A natural choice is to group variables 
referring to the same target together. However, assigning all variables to the same partition leads 
to extremely large L‘local’’ state spaces for each submodel, which is unacceptable. A better choice 
is to further split the subnets into even smaller ones. We arranged the variables in n + 1 clusters, 
as follows: 

subnet 5i+ 1 : phasei 
subnet 52 + 2 : statusi, alanni 
subnet 52 + 3 : xi, vzi 
subnet 52 + 4 : yi, vyi, ayi I subnet 52 + 5 : zi, W Z ~  

Domain of the state variables. Since S W W  operates on discrete-type systems, abstraction by 
discretization is necessary to cope with the continuous-type variables of the RSM algorithm. To 
come up with a good representation of the variable domains, we start with the roughest possible 
discretization that can be extracted from the protocol specifications, and then refine it further as 
needed. We had to take into consideration a balanced solution between a very rough discretization 
(which potentially hides too many meaningful behaviors by merging distinct states into a single 
representative), and a discretization that is too fine for an efficient state-space generation (which 
prevents analysis due to the state-space explosion problem). In the end, we chose the following 
domains (the subscript i is omitted for clarity): 

0 The coordinates x , y , z  could be as simple as x,y,z E (0, 1,2} ,  where 0 means out of the 
monitored zone, 1 means in the vicinity, and 2 means on the runway. However, we chose a 
finer parametric representation: x E (0, ..., max,}, y E ( 0 ,  ..., m a x y } ,  and z E (0, ..., rnax,}, 
where 0 means outside the zone, and the constants max,, m a x y ,  and max ,  can be adjusted to 
the modeler’s preference. In other words, location (0, 0,O) represents all positions outside the 
zone. A target that exits the zone, or has not yet entered it: is assigned this location. As an 
alternative, we could have used an “outer layer” of locations surrounding the monitored zone, 
but this would unnecessarily increase the state space with entries of the form (0, y, z ) ,  (x, 0, z ) ,  
and (x, y, 0), all representing the same circumstance: the target is not being monitored. 

0 The speed values vx, wy, wz could be assigned the domain (0, kl, f2} ,  where 0 means not 
moving, k1 means moving slowly (below the predetermined taxi speed threshold T S  of 45 
knots), and 5 2  means moving fast (above TS) .  Again, a better representation is vx, vy, wz E 
(-maxspeed, ..., 0, ..., m a x s p e ~ } ,  using another parameter maxspeed. 
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Figure 2: Example projection of continuous trajectory in 2-D. 

Since, in Petri nets, places cannot hold a negative number of tokens, we have to offset the 
values of the speed variables by - maxSpeed. 

0 The acceleration ay has only two relevant values: non-negative or strictly negative. 

The status is one of { o u t ,  taxi, talceofl, climb, land, 
rollout, flythru}. 

0 The phase is one of {radar-update, set-status, detect}. 

The variable phase works like a program counter for the execution of the algorithm on each 
participant, which loops through three steps: 

A. Update location of targets (phase = radar-update). 

B. Update status of targets (phase = set-status). 

C .  Set or reset alarm (phase = detect). 

We next discus in detail the modeling decisions that were taken for each of these three steps. 

A. The 3-D motion of targets. Our discretization divides the monitored space into a number 
of volumes arranged in a 3-D grid. As a result, the possible positions of the aircraft are identified 
by a finite number of grid cells, from the discrete domain ( O , O ,  0) U (1, ..., maxz} x (1, ..., maxv} x 
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(1, ..., m a x z } .  Similarly, continuous trajectories have to be represented by abstract, discretized 
trajectories through the cells of the 3-D grid. This is a reasonable compromise when modeling 
continuous variables with discrete-state approaches. Regarding the possible trajectories allowed in 
the model, there are three alternatives to be considered. 

First is the projection method, which assigns to  every continuous trajectory its corresponding 
discrete path in the grid. An example of such projection is given in Figure 2 (in a 2-D space, 
for the sake of readability). The grid cells in the figure have the size of 100 units (feet), and the 
snapshots are taken after each 0.5 time units (seconds). The speed units are measured in axis 
divisions jumped after each update. The major challenge in putting in practice this method is the 
difficulty in discerning between physical possibilities and impossibilities. There is no efficient way of 
ruling out all anomalies. For example, a target could change its real location, while its discretized 
location might not. The dependency between the speed and the number of time units a target may 
rest in one grid cell is also very difficult to establish: it could be one move (at high speed), or more 
(at low speed), but no upper bound on the number of time units allowed within one grid cell can 
be computed in the discretized model. 

Therefore, we have considered a different approach to modeling the motion of targets, that 
proved to be more practical. One alternative allows nearly free movement of a target, in the sense 
that a move to an adjacent cell is always allowed. In principle, a target is free to remain in the 
current cell or to move to any of the neighboring 26 cells, corresponding to a nondeterministic 
decrease, no change, or increase in the coordinates z, y, and z .  However, the changes must be 
consistent with the heading. This allows for almost random movements. On the one hand, the 
restriction to allow transitions only between adjacent cells excludes a large number of trajectories, 
most of which are truly physically impossible. On the other hand, we have to argue that no realistic 
trajectory is excluded by the model. This is indeed true when the cell size is large (corresponding 
to a “rough” discretization of the space, into a small number of cells). In our simplest model, which 
captured all the interesting properties, the size of a grid cell is 900 feet. Given that the location 
updates arrive on the data-link every 0.5 seconds, a target can skip a grid cell and move to a cell 
two discrete positions away only if traveling at  speeds exceeding 1800 ft/sec N 1227 mph (or N 1975 
km/h). This is over 1.6 times the speed of sound. While it is not entirely safe to assume that these 
speeds are not encountered at civil airports, their exclusion from our model is reasonable and helps 
simplify the analysis. Moreover, a rough discretization also serves the purpose of mitigating the 
state-space explosion problem, as the number of possible states becomes manageable. Figure 3 
shows the possible moves of a target in this second model (also in a 2-D space, for clarity). 

To achieve the non-deterministic choice, we model the 3-D motion not via 27 concurrent and 
mutually exclusive events, but rather via the composition of a non-deterministic choice to decrease, 
not change, or increase each coordinate. More precisely, the next position is computed as the 
composite effect of firing three concurrent and independent events, non-deterministically chosen 
from among a set of three mutually exclusive options for each axis, for a total of just nine events. 
The update of the coordinate and speed component vzi for target i is modeled by the subnet 
shown in Figure 4 (updates for the y and z coordinates are analogous, they are triggered by the 
arrival tokens in places uy and uz, respectively). Petri net places are drawn as circles, transitions 
as rectangles, and immediate transitions as thick bars. Transitions inc-x and dec-x have associated 
guard expressions, and arc cardinalities (other than the default value 1) are shown on each arc. Note 
that # ( a )  indicates the current number of tokens in place a ,  thus the effect of the arc from place v z  
to transition update is to reset the old value of wx in preparation for its new setting. The three arrays 
of immediate transitions are needed to assign a value to vzi: random positive (1 5 vz, 5 m a x s p , ~ ,  
i.e., from maxsped  + 1 to 2maxspeed tokens), any value (-maxspeed 5 vzi 5 mazspeed, i.e., from 0 to 
2Vlaxspeed tokens), or random negative (-maxspeed 5 v x i  5 -1, Le., from 0 to maxspeed - 1 tokens). 
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Figure 3: Possible 2-D movements of a target ("free-motion" model). 

Also, when a target enters the zone, its position is nondeterministically chosen on the frontier 
of the monitored volume, i.e., 2 E (1, muzz}, y E (1, mazy}, or z = m a ,  (but not z = 1, since no 
entry is possible from below ground). The entry speed parameters are also chosen nondeterminis- 
tically, but consistently with the direction of entry. For example, a target cannot enter from the 
left with a negative vz .  

This second model might still include unrealistic trajectories. Examples of typically abnormal 
behaviors allowed in the model are: oscillating back and forth between two adjacent squares (when 
the corresponding speed components alternate from positive to negative and back) or staying forever 
in one square, even with a positive speed. This is still acceptable in the verification process as long 
as the model covers all realistic behaviors. If a property holds globally in the abstract model, then 
it will also hold in the realistic model. However, if a property does not hold globally, we must 
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radar-update set-status 

update done 

Figure 4: Subnet to update the variables z and wz in each submodel 

check the corresponding counterexample generated by SMART to determine whether it represents a 
realistic scenario. 

If a more thorough elimination of unwanted trajectories is desired, a third alternative that 
forbids abrupt variations in speed can be considered. In other words, both the coordinates z, y, z 
and the speed components uz,wy,wz can change by at most one in absolute value. This further 
restriction can be achieved by allowing only the increase, decrease, and no change of speed at each 
timestep, together with a consistent update of the coordinates: for example, the variable z cannot 
be decreasing when the speed component uz is non-negative. 

In comparison to the free-motion model, Figure 5 shows the possible next states (in 2-D space) 
for a target whose speed components are vx = 3 and wy = 3 in the current state. In this case, only 
four new locations are possible, corresponding to the no change or increase in 2 and, independently, 
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Figure 5 :  Possible movements from a state satisfying vz = 3, vy = 3 (“restricted” model). 

y. The reduced number of choices is due to the strictly positive value of the speed, which does not 
allow any move in the negative axis direction. Only when one speed component is 0 in the current 
state, the target can move in both directiorw of the corresponding axis, a, see11 in Figure 6. In 
this model, at least two steps are required to go from positive to negative speed (and vice versa). 
This implies that “zigzagging” is not possible, a fact that could have a significant importance in 
the analysis, as seen in Section 5 .  

We implemented both versions, with free or restricted movement between adjacent cells, in 
sryrppr. 
B. Status definitions. In the second phase of the execution loop, the status variable of each 
aircraft is deterministically updated using the other state information. In our model, the status 
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Figure 6: Possible movements from a state satisfying v z  = 1, wy = 0 (“restricted” model). 

values are: 

out :  not in the monitored zone 
E (z = 0)  A (y = 0)  A ( Z  = 0)  

taxi: on the ground, either at low speed or not with a runway heading 
G ( Z  = 1) A ( ( 1 ~ ~ 1  5 T S  A 5 T S )  V (UX # 0)) 

takeof f :  on the ground, with a runway heading, accelerating 
I ( Z  = 1) A (Ivy1 > T S )  A (2/x = 0 )  A (uY 2 0 )  
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.. 

~1 grid size 
muxSpeed 1 

3 x 5 ~ 3  2 
5 x 1 0 ~ 5  2 

lOxlOxl0 2 
3 x 5 ~ 3  5 

5 x 1 0 ~ 5  5 
lOxlOxl0 5 

Number of states in the model 
1 tar. 2 tar. 

SS gen. time (sec) SS gen. memory (MBytes) 
4 tar. 

l . 0 ~ 1 0 ’ ~  3.4~10” 1 . 1 ~ 1 0 ~ ~  3 . 5 ~ 1 0 ~ ~  2.01 2.93 3.93 4.91 2.00 3.00 4.00 4.99 
4 . 1 ~ 1 0 ~ ~  8 . 4 ~ 1 0 ~ ’  1 . 7 ~ 1 0 ~ ’  3 . 5 ~ 1 0 ~ ~  5.52 8.27 11.19 13.91 7.21 10.81 14.41 18.01 
7 . 6 ~ 1 0 ~ ~  6 . 6 ~ 1 0 ~ ~  5 . 8 ~ 1 0 ~ ’  5 . 0 ~ 1 0 ~ ~  13.62 20.58 27.50 34.42 20.86 31.29 41.72 52.15 
2 . 7 ~ 1 0 ~ ~  4.4~10” 7 . 2 ~ 1 0 ~ ~  1 . 2 ~ 1 0 ~ ~  4.41 6.51 8.77 10.98 4.22 6.33 8.44 10.55 
8 . 3 ~ 1 0 ‘ ~  7 . 6 ~ 1 0 ~ ~  6 . 9 ~ 1 0 ~ ’  6 . 3 ~ 1 0 ~ ~  12.91 19.07 25.42 32.05 15.48 23.21 30.95 38.69 
1 . 4 ~ 1 0 ’ ~  5 . 0 ~ 1 0 ~ ~  1 . 8 ~ 1 0 ~ ~  6 . 7 ~ 1 0 ~ ~  28.45 42.84 57.25 71.75 39.73 59.59 79.45 99.31 

3 tar. 4 tar. 1 tar. 2 tar. 3 tar. 4 tar. 1 tar. 2 tar. 3 tar. 

Table 1: State-space generation results for our model, for 1, 2, 3, or 4 targets and as a function of 
m a x ,  x m a x y  x maxz  and maxsped. 

rollout: on the ground, with a runway heading, decelerating 
( Z  = 1) A ( 1 ~ ~ 1  > T S )  A ( V X  = 0) A (aY < 0 )  

climbout: airborne, with a runway heading, strictly positive vertical speed 
( Z  > 1) A (wx = 0) A (vz > 0 )  

land: airborne, with a runway heading, negative vertical speed 
( Z  > 1) A (wx = 0)  A (wz 5 0) 

j lythru: airborne, not in climbout or land mode 
= ( z  > 1) A (wz # 0)  

The predicates z = 1 and z > 1 used above also imply x > 0 and y > 0, by the way we designed the 
non-monitored zone to be represented by a single cell, not by a rim of states. Also, the acceleration 
ay, needed to discern between talceofl and rollout status, does not need to be modeled directly, 
since its value is computed on the spot based on the variation of the variable wy. 

The partial model constructed so far can be used as a building block for further analysis, since 
it captures the free movement of targets in 3-D space (phase one of RSM) and the target status 
assignments (phase two of RSM). This model exhibits strong event locality, i.e., each event depends 
and affects only a few levels; this is an essential property exploited by the saturation algorithm we 
employ. To evaluate its complexity, we collected measurements of the state spaces generated for 
different input parameters of this core model: number of targets, n, grid size m a x Z ,  m a x y ,  and 
max,, and speed thresholds, maxsped .  The state-space size, runtime, and memory consumption 
are listed in Table 1. The results show that the state space can be generated for multiple targets, a 
fairly large size of grid, and multiple thresholds of speed, in a few minutes using under 100 MBytes. 

C. Setting the alarm. The third and most important phase of the RSM algorithm is setting 
the alarm flag for every target. In pseudo-code, this corresponds to a single variable assignment 
statement: set the (boolean) value of each alamni based on different combinations of the current 
values of the other variables, as listed in operational state matrix of Table 2. We can either 
model the third phase directly, by adding transitions to the Petri net, or define queries that use a 
combination of status and position variables to determine whether the alarm would have been set 
correctly. We choose the former approach. 

Modeling this rather complex assignment statement in a Petri net is difficult because of two 
factors. First, predicates such as “distance is closing” or “in the takeoff path” potentially involve 
geometry and linear equations and are difficult to express in a discretized model. However, certain 
factors help make our task easier: the designers kept the concepts simple and trigonometry can be 
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Target + 

Ownship 1 
tmi 

takeoff 
climbout 

land 
rollout 
BYthrn 

I taxi taKeoff 
a A f  
dVe 
dVe 
dVe 
aVd 
bAc 

a: Distance closing 
b: In takeoff/landing path 

climbout 

a A f  
dVe 
dVe 
dVe 
aVd 
bAc 

- 
land 

aAf  
dVe 
dVe 
dVe 
aVd 
bAc - 

rollout 

aAcAf 
aVd 
dVe 
aVd 
dVe 
bAc 

Rythru 

- 

bAc 
bAc 
bAc 
bAc 
- 

e: Distance less than min. sep. 
d:  Takeoff/landing in same direction, less than min. sep. 
e: Takeoff/landing in opposite direction, closing 
f :  Taxifstationary on or near runway 

Table 2: Operational state matrix for setting the alarm. 

circumvented on a case by case basis. For example, “distance to target i is closing” should normally 
be evaluated by comparing the value of the expression J(x0 - xi)2 + (yo - yi)2 + (ZO - zi)2 in the 
current and previous states. This could further imply that the previous location of each target 
should be stored in a set of auxiliary variables, say oldzi, oldyi,  oldzi, further increasing the state 
space. However, this can be avoided by exploiting the information derived from each aircraft’s 
status. For example, if ownship is taxiing and target i is taking off, we know that zo = 1,  ~1x0, wyo 5 
TS, zi = 1, vxi = 0, lwyil > T S ,  and zlzo = zlzi = 0, i.e., the target is on the ground, lined up with 
the runway and moving faster than the taxi speed limit. For the distance to be closing, it is enough 
for ownship to be in front of the target, depending on which direction this is moving. Hence, in 
this situation, the predicate can be expressed as 

We can similarly express the other predicates as follows: 
b A c  ( v y o > O A ~ o I ~ i 5 ~ 0 + 1 A 1 2 0 - - z i l I  1 A z i 5 2 )  

5 2) V 
E 

(VYO < O A YO - 1 5  yi <yo A I~o-zil 5 1 A 
V ~ O  * V Y ~  > 0 A 1x0 - 
(VYO > 0 A V Y ~  < 0 A ~i 2 y0)V 

d 5 1 A 1 ~ 0  - yil 5 1 
e 

f 1 <xi < max,, 
where the above example formulae are derived for the following pairs of states, respectively: b A c 
for takeoff-flythru, d and e for takeoff-takeoff. 

The roughness of the discretization can also help simplify the model. If m a z ,  = 3 (which is 
a reasonable assumption given that there is usually no room for two aircraft on the runway side- 
by-side, anyway), then xi = 2 for any aircraft taking off or landing. In this case, the predicate 
1x0 - xi1 5 1 is equivalent to 1 5 xo 5 3, which is always true when ownship is not out. 

Kronecker consistency requirements. A second challenge in modeling the third phase is that 
the Kronecker consistency requirements force us to split events into multiple finer-grain events. 
For example, the predicate “target i is in takeoff/landing path of ownship” can be expressed as: 

E 

( w o  < 0 A wi > 0 A Yi I Yo) 
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maxspeed --f 

I grid size 
3 x 5 x 4 
3 x 7 x 4 

3 x 10 x 5 
5 x 10 x 7 

3 x 5 x 4 
3 x 7 x 4 

3 x 10 x 5 
5 x 10 x 7 

Table 3: Results from state-space generation on the complete m o d .  

~~ 

2 )  3 1  4 1  5 
State-space generation time (sec.) 
75.92 105.17 179.28 252.25 

195.54 324.65 604.23 805.95 
995.18 2212.24 4668.55 7348.27 

Memory consumption (MB) 
48257.3 - - 

11.19 21.20 32.58 49.39 
18.27 36.02 56.91 87.25 
42.59 83.53 138.56 218.85 

246.22 - - 

However, since variables 
involving the two must be split to satisfy Kronecker consistency, by domain enumeration: 

and 90 are described by different local states of the model, each term 

The same procedure must be applied to ZO and xi, by further splitting terms: V15c 2- <mm2 VliCylmmy 

((Xi = CZ) A ( 2 0  = CZ) A ( w o  > 0) A (Yi = C y )  A (Cy > Yo) )v 

((Xi = CZ)A (20 = C3C)A (VYO < O M  (Yi = C y ) A  ( C y  < Y o > )  

This generates 2.muxZ.muxy events from a single original event, one for each term of the disjunction. 
The split events require over 2000 lines of additional SWWT code, compared to just 500 lines needed 
to model the first two phases. At the end of this process, the most significant change in the model 
was a severe loss of event locality, leading to a slowdown in generation time and, most importantly, 
a much higher memory consumption. The peak MDD size increased to over 1000 times larger than 
the final, causing the SWWT model checker to run out of memory for large parameters, including 
multiple targets. However, we were still able to build the state space for one target and a medium 
size of the grid, within 1GB of memory and less than five minutes. This was enough to expose 
several potential problems with the decision procedure of the protocol. Table 3 shows the state- 
space measurements on this final 9" model with just one target. Missing entries in the table 
correspond to parameter choices that required excessive runtime or memory. 

At the same time, it is worth mentioning that the saturation technique implemented in 2" 
was the only technique able to build the state-space of the model. Our attempts to use other tools 
have failed: the symbolic model checker NuSMV [9] runs out of memory even before starting the 
generation, as the BDD encoding of the transition reiation is too large, while the explicit model 
checker SPIN [15] explores a very small fraction of the state-space (less than 1/106 even when using 
partial order reduction technique) to be able to expose any problem. 

5 Model checking RSM 

Model checking is concerned with verifying temporal logic properties of discrete-state systems 
evolving in time. 
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I LEGEND: 0 p holds 0 q holds 0 don’t care I 

Figure 7: The semantic of CTL operators. 

SNAW implements the branching time Computation Tree Logic (CTL) [lo], widely used in prac- 
tice due to its simple yet expressive syntax. In CTL, operators occur in pairs: the path quantifier, 
either A (on all future paths) or E (there exists a path), is followed by the tense operator, one of X 
(next), F (future, finally), G (globally, generally), and U (until). Their semantic is informally shown 
in Fig. 7, where system states are depicted as the nodes of the trees and arcs represent transitions 
between states, so that a node precedes in temporal order the nodes it can reach. In each case, the 
root node is labeled with a CTL formula it satisfies. 

Notation and formal definitions. The operational state matrix in Table 2 lists the alarm 
setting criteria, as given in the documentation of the RSM algorithm [12]. Our study aims at 
exhaustively checking whether this operational matrix is able to detect all incursion scenarios. A 
situation where two aircraft get too close to each other (within the minimum separation distance of 
900 feet) without the alarm variable having been set is from now on called a missed alarm scenario. 
The following predicates are used to describe properties of interest (for clarity, subscripts o and t 
refer to ownship and target, respectively): 
detect = phase, = detect A phase, = detect 

alarm = alarmt=true 
sep = disturLce(o,t) > min. sep. 

track = status,, $! { taxi,fEythru} V statust $! { taxi,j?ythru} 

We begin with asking the most simple safety property. 

A safety property. “Is there a tracked state where minimum separation is  lost and the alarm is  
off 2” 

0 CTL syntax: EF( detect A track A i s e p  A i a l a r m )  
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I I 

t o  : 
ownship= t axi 
target = t axi 
distance> MS 
alarm = OFF 

ti = t o  + A: 
ownship=takeoff 
target =t axi 
distance<MS 
alarm = ON 

t2. = t o  + 2A: 
ownship= t akeoff 
target =t axi 
distance< MS 
alarm=OFF 

LEGEND: 
ownship position 

@ target position 

<; min. separation 

Figure 8: Scenario for the memory-less property (ground level). 

The omission of the predicate detect from the query can lead to false positives since, if a target’s 
coordinates are inspected in the middle of the radar updates or its status is queried before it is 
modified accordingly, the data can be inconsistent. Therefore, all queries should be asked only at 
the right moment: when ownship executes phase C of its algorithm. 

A scenario that contradicts the safety query arises when the condition “distance is closing” is 
not satisfied in the current state. This is the case of the third snapshot of Figure 8. However, this 
might not correspond to an unwanted behavior, since the alarm might have been set in a previous 
state, when the minimum separation was lost. The value of the alarm variable also depends on 
whether the alarm is (‘aged” or not for a few more cycles. Nevertheless, the situation is still of 
potential concern, even with aging of the alarm, since the target can maintain a constant distance 
(at less than minimum separation) for longer than the duration of the aging, eventually resulting 
in a “bad state” in the round after the alarm expires. 

The “memory-less” nature of the query influences the result. We looked at the property in 
a particular snapshot of time, without considering the sequence of events leading to the current 
state. To get a better understanding of the system, we next investigate the states of the system 
immediately after the minimum separation distance between two aircraft is lost. 

Analysis of the transition that causes loss of separation. “Is there a state where minimum 
separation i s  lost by transitioning to the current state while the alarm is 08 ?” 

0 CTL: EF(detect A track A sep A E[( ide tec t )  U (detect A track A i s e p  A i a l a r m ) ] )  

The nested EU operator in the query (instead of EX) is due to the fact that several transitions are 
needed to complete the update of the coordinates, 3, and of the status, 1, and to set the alarm 
again, 1. A witness for this query (see Figure 9) has ownship in a landing or climbout state, the 
target flying across the runway faster than ownship, moving within separation distance from the 
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1 

ownship=landing 
target =flyt hru 
distance< MS 
not in landing path ! 
alarm=OFF 

I I 

ownship=landing 
target =flyt hru 
distance> MS 
alarm = OFF 

LEGEND: 
ownship position 

@ target position 

<: min. separation 
in landing path 

Figure 9: Scenario 2 (airborne) 

side at an angle. The condition for setting an alarm in this circumstance is “distance less than 
minimum separation and target in takeoff/landing path”. The second term is not satisfied, hence 
no alarm is raised. Aircraft can actually collide (trajectories intersect in Figure 9>, while none of 
the participants are ever warned. 

The above scenario is the only one satisfying this query, a fact attesting to the robustness of 
RSM. This situation can be corrected by adding “distance less than minimum separation” as part 
of the criterion for this combination of states. 

We included the predicate track in both states (before and after the transition), as we are 
interested in scenarios involving only takeoff and/or landing trajectories. However, this additional 
constraint could mask some other undesired behaviors. Therefore, we next ask a more general 
question. 

A stronger safety property. 
reachable without ever previously setting the alarm?” 

“Is there a tracked state where minimum separation is lost, 

0 CTL: E [ ( l a l a r m )  U (detect A track A i s e p  A l a l a m ) ] ;  

Several scenarios satisfy this query. 

Example 1. As shown in Figure 10, actors enter the monitored area taxiing fast, not aligned to the 
runway, and already at close distance to each other. Note that the RIPS specifications explicitly 
ignore this situation, as the algorithm is only active when ownship is taking off or landing. However, 
once on the runway, say ownship changes direction and aligns itself to the runway. Thereafter, 
it is categorized as takeoff (or climbout, if it becomes airborne). The other aircraft stays within 
minimum separation, but it does not close in: it can be either behind ownship or, more dangerously, 
in front of it. No alarm is raised because the criterion “distance is closing” is, again, not satisfied. 
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t z  = t o  + 2A: 
ownship=t akeoff 
target = t axi 
distance< MS 

LEGEND: 
ownship position 

@ target position 

r: min. separation 

Figure 10: Scenario 3 (ground level). 

If the distance between aircraft at entry is very small, there might not be enough time for an escape 
maneuver, even if, later on, the alarm set by closing in. 

Figure 10 shows an abstract trace that contradicts this safety property. The trajectories are 
shown for a horizontal section in the monitored zone at ground level. The third snapshot illustrates 
the “bad state” of the system: the two aircraft are within minimum separation distance, but no 
alarm has been issued either for the current state or any of the previous states in the scenario. 

Example 2. An identical scenario exists for airborne states that are not tracked (status f iythm).  
Example 3. Additional scenarios do not satisfy this safety property, where events develop immedi- 
ately after both planes enter the monitored zone. The bad behavior in these cases is caused by the 
fact that the previous position is unknown - coordinates (0, 0,O) in our model - for both planes, 
hence distance cannot be closing in the next state. If the airplanes enter the zone at positions 
very close to each other (e.g., both are trying to land), the alarm will not be raised. However, this 
behavior is exhibited only in our theoretical model, due to our choice of modeling conventions, and 
not in the actual implementation of the protocol on the RSM device. 

Summarizing the common characteristics of the above scenarios, we observe that the key factor 
is that both aircraft; are in the taxi or Sythru status when minimum separatim is lost. The 
situation is not tracked, hence a potentially bad occurrence is masked by a protocol specification. 
The predicate “distance closing” is not satisfied and no alarm is issued, although the distance is 
less than minimum separation. 

To further extend our discussion, we look at possible continuations of the scenario after the 
bad state is reached. If the distance is closing in the next state, a warning will be issued and the 
“missed alarm” situation will cease to exist. The only way for a malicious agent to perpetuate the 
problem is shown in Figure 11, which is an  extension of Scenario 3. The target can stay within 
minimum separation radius for a longer period of time if it “zig-zags” in front of ownship and at 
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t o :  
ownship=t axi 
target=taxi 
distance=D 

I 

t2 = to $- 2a: 
owns hip = t a keoff 
target =t axi 
distance=D 

I I 

LEGEND: 
ownship position 

@I target position 

<: min. separation 

ti = to + A: t 3  = to + 3A3 
ownship=taxi 
target =t axi 
distance=D 

target = t axi 

Figure 11: Scenario 4 (ground level). 

each radar update has the same distance to ownship. The target has t o  zig-zag to maintain the 
distance, since following a parallel path to ownship will cause RSM to consider it as taking off. The 
alarm criterion for the new combination of operational states is “taking off in the same direction 
and distance less than minimum separation”. Therefore, an alarm will be issued as soon as the 
target stops zigzagging. 

The case when the target is not an aircraft (vehicle, service truck, etc.) adds an extra degree 
of freedom for a malicious behavior of the target (see Scenario 5, in Figure 12). Initially, ground 
vehicles were always considered in taxi mode by the protocol, regardless of their speed, heading, and 
Y ” J  nh~rcica! “* coordinates. Therefore, zs in Scenario 4, the target may follow ownship at close distance, 
and even continue chasing ownship after it is lined up for takeoff and accelerating. No flag will be 
raised for the same reasons as in Scenario 4. 

For the most recent implementation of RSM, the designers took into account our findings and 
eliminated the special treatment given to ground vehicles. This addresses the situation in Scenario 
5. 

The situation in Scenario 4 is of less concern, since it is extremely difficult to realize in practice, 
even intentionally by a saboteur. At the same time, there is some benefit in exposing it: the designer 
is aware of this low-probability event. Also, by the fact that is the only remaining unwanted behavior 
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t o :  
ownship=taxi 
target = t axi 
distance=D 
alarm = OFF 

t k = t o + k . A , k > O :  
ownship=takeoff 
target =t axi 
distance=D 
alarm=OFF 

I 

e ownship position 
@ target position 

.I min. separation 

Figure 12: Scenario 5 - aircraft vs. vehicle. 

in the system, it serves as a validation for phase 3 of the RSM algorithm. 

6 Conclusions and future work 

Several lessons were learned from our analysis, first and foremost that our formal verification 
approach and techniques have an undeniable value. We presented the designers with a list of 
important findings which were not exposed during the testing activities involving real aircraft, 
already underway at different airport locations. The merit of our technique is that, besides being 
considerably less expensive, it is exhaustive. 

We were able to analyze all possible scenarios in our model and found situations of potential 
concern that happen with extremely low probability. These are almost impossible to expose during 
either testing procedures, which usually afford no more than a dozen test flights a day, or simulation 
sessions. When compared to the actual state space sizes of the order of 1013 - states, this 
shows the need for exhaustive analysis. The second outcome of our experiments was that, after 
identifying the problems and suggesting modifications to the protocol to eliminate them, we have 
increzsed the  level of msuraxxe of the desigii in what concerns missed alarms. Ail Lhe findings 
were related to situations when only one aircraft is landing or taking off and the other is not. The 
section of the decision table dealing with both aircraft landing or taking off was validated in the 
original form. 

With respect to the dual analysis, of false alarms, this is still on the list of future plans. From 
a practical point of view, pilots are equally concerned with both types of situations. Individual 
reports indicate that frequent false alarms can become a distraction or, in the best case, a nuisance 
factor in operating an airplane. It is also the case that a system with too many false alarms will 
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tend to be switched off or ignored, thus rendering it useless. Therefore the occurrence rate of false 
alarms has to be reduced, even though these are not as critical as missed alarms, which should 
be completely eliminated. The designers of the protocol had to come up with a balanced solution 
trading the simplicity of very “loose” requirements that raise too many alarms for the complexity of 
“stricter” conditions that decrease the number of false alarms, but make the analysis more difficult. 

Another aspect not discussed here is fault tolerance. We assumed that all scenarios happen 
in the absence of communication faults, meaning that the radars and data-links provide accurate 
and timely updates to all participants. A natural extension of our analysis is to include faulty 
behaviors, of either benign nature (missed or late updates) or malicious/Byzantine (inconsistent 
data between participants). This type of analysis requires the inclusion of probabilistic aspects in 
the model, and will be the subject of further research. While our work verifies the correct operation 
of RSM under no-fault assumptions, the presence of faults on the data-link may significantly impact 
the correct operation of the algorithm. On the one hand, if all data is faulty, RSM will be of no 
help whatsoever in avoiding incursions. On the other hand, if no data is faulty, we have already 
demonstrated the correctness of the algorithm. The task of realistically modeling faulty data that 
falls in between these extremes is a major challenge. 

Finally, this case study has inspired ideas of theoretical nature that can result in improvements 
and extensions to  our technique. The observation that a single temporal logic query can have more 
than one counterexample (thus correcting it alone will not entirely rid the system of the error) 
suggests that generating and storing all counterexamples is beneficial. This is not commonly done 
by model checkers. Also, even though the Kronecker matrix encoding of the transition relation 
has been found more efficient than the traditional BDD encoding in all our previous studies, this 
particular application has revealed a situation when the need to satisfy the consistency requirements 
could be detrimental, by producing an excessive number of split events. A saturation approach 
that does not require the model to be Kronecker consistent has ben proposed in [19], but it can 
suffer from poor performance due to excessively large local state spaces; we are currently working 
on extending it so that it is completely general, yet with an efficiency approaching that of the 
Kronecker-consistent case. 
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